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ON SOME RECIPROCAL RELATIONS IN THE THEORY OF NONSTATIONARY FLOWS
By I. E. GaRRICE

SUMMARY

In the theory of nonstationary flows about airfoils, the
‘“andicial Ufe” function ky(s) of Wagner and the “‘alter-
nating ift" function C(k) of Theodorsen hare fundamental
significance. This paper reports on some interesting
relations of the nature of Fourier trangforms that exist
between these functions. General problems in transient
flows about airfoils may be giren a unified broad
treatment when these functions are employed. Certain
approximate results also are reported which are of notable
simplicity, and an analogy with transient electrical flows

is draum.
INTRODUCTION

There exist at the present time two significant func-
tions that have been introduced into the two-dimen-
sional potential theory of nonuniform motion of airfoils,
one by Wagner (reference 1) and the other by Theo-
dorsen (reference 2). VWagner's function concerns the
growth of circulation or lift about an airfoil at a small
fixed angle of attack sterting impulsively from rest to a
uniform velocity ». Theodorsen’s function describes the
lift due to circulation about an airfoil oscillating sinu-
soidally and moving with uniform velocity ». It is
the object of this paper to note the usefulness of these
functions in handling & wide class of problems in tran-
sient flows about airfoils and to point out certain inter-
esting relations existing between them. These rela-
tions are of the nature of Fourler transforms, which
occur with remarkable abundance in numerous fields of
physics and which are one of the main studies of the
recently popular operational-calenlus methods. A
noteworthy analogy between transient hydrodynamic
flows and transient electriesl flows is also mentioned.

A third interesting function, which concerns the be-
havior of an airfoil upon entering s gust, has been
introduced by Kiissner in reference 3, which is an
excellent survey of the status of the problem of non-
stationary flows about airfoils. This function and its
relation to Wagner’s function will aiso be discussed.

THEORY OF NONSTATIONARY FLOWS

Wagner’s function, k,(¢).—Let the chord of the airfoil
be 2b and let the angle of attack (assumed small) be «.
Also let the impulsive mofion from rest to uniform
velocity » take place at the origin, s=0 (fig. 1). The
vertical velocity at the airfoil surface is w=v sine.

Then, based on the physical assumption that the ve-
locity at the trailing edge is finite for all time, Wagner
derives for the lift, as a function of s=ti/b,

L=2xbpvwk,(s) 1)

The function k,(s) is illustrated in figure 2. Wagner
does not derive an explicit analytic expression for
k:(¢) but gives only numerical values. Kiissner (ref-
erence 3) derives a slowly convergent expression in
series form for &;(s) that checks Wagner’s values. The
expression is rather long and will not be reproduced
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FIGURE 1.—Dlustration of nondimensional parameter s, distance fraversed In terms
of half chord &.

here. It is of great interest to note that the following
simple expression
2
k(o)1 —irs (1a)

agrees within 2 percent in the entire range 0<{s< =.
(Cf. table 1.) 'This expression, which may be regarded
as a fortunate choice of the author, is especially good
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F1GURE 2.—The function ki(s)} of Wagner.

in the range & small; it may be reasoned that it repre-
sents the actual physicel state more closely than the
theoretical solution, since it approaches the steady
condition (8= =) somewhat more slowly.

It is observed that half the final lift is assumed at
once and that the lift gradually approaches its asymp-
tote, 2xbpvw, in agreement with the results for stationary
flows.

347



343

The function k;(s) is analogous to what is termed in
electrical-circuit theory the “indicial-admittance func-
tion” A(f), which is the current response of & linear
network to a suddenly applied unit voltage; substitute
lift for current and unit vertical velocity for unit voltage
to complete the analogy. )

Theodorsen’s function, C(k).—The lift on an airfoil
oscillating sinusoidally through a small angle of attack
and moving with uniform velocity v is given by the
sum of two parts: (a) A classical noncirculatory part
and (b) a part due to circulation. This paper is not
concerned with the classical part, which consists of the
virtual inertia terms, the general concepts of which go
back to the time of Kirchoff and Kelvin.

The steady-state part of the lift due to circulation
about an oscillating airfoil moving with velocity v has
been given by Theodorsen as

L=2xbpvC(k)Q @)

where
@=we™* is the vertical velocity at the three-quarter
chord point ! in complex form,
and where

k=%é: where « is the angular frequency.
The parameter k permits the substitution of distance s
in place of time # since wt=%b—vg =ks. The function
C(k) is defined as

H.@
Cl)=gorme &)
where H,® and H,® are Hankel functions (Bessel
functions of the third kind), or, separated into real and
imaginary parts and expressed in terms of Bessel

functions of the first and second kinds,
Ck)=F(k)+1Gk)

Ji( 1+ Yo + Y1 (¥i1—Jo)
i+ Yo) 2+ (Yi—do)?
N+ Yo+ (Yi—Jo)?

These functions are illustrated in two ways in figure 3.

It is important to note that, in the interpretation of
equation (2), C(k) is considered to operate on the

function Q. Thus, suppose the actual vertical velocity
is w, sin ks. This quantity must be expressed as
I. P. we™. Then the lift is

I. P. 2xbpvw,C(k)e™*

)

where

Fk)

Ak)y=—

or
2xbpowo(F24- Gt sin (Ics—l—tan“%)

t It is a remarkable fact that the vertical velocity at the three-quarter chord point
determines the clroulation force on the airfoil in oscillatory motions. The lift due to
circulation acts at the one-Quarter chord point. The terms “forward neutral point”
and “rear neutral point’ have been introduced by Kiissner to designate these char-
acteristio points.
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The lift thus has the same frequency as the vertical
velocity and both its magnitude and phase are functions
of k.

The snalogy with alternating currenis in electrical
networks can be mentioned. The funection C(k) cor-
responds to the complex admittance function for alter-
nating- currents (reciprocal of the complex impedance
function Z(w)). The real and imaginary components
F and @ are analogous, respectively, to the alternating-
current power and quadrature components; the lift due
to complex vertical velocity @ corresponds to current
due to complex voltage E.
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FiGURE 3.—The function C(k)= - of Thoodorsen,

Superposition principle.—Linearity of the equations
of Wagner permits one to write, in general, for the lift
due to a vertical-velocity function w(s) (at the three-
quarter chord point) suddenly applied at the instant
when §=0,

= OO+ [ he—a)fEd  ®)

where w(0) is the value of w at s=0. This result can
be derived by replacing the function w(s) by & step
function the envelope of which is w(s) and by going to
the limit. The equation is a well-known mathematical
result and is often employed in electrical-circuit theory
(reference 4, p. 68). '

Several useful forms of this equation exist, of which
one is

=0 OR©+ [ k) we—adds (5

Equation (5) expresses & noteworthy result, since it
permits the handling (at least formally or graphically)
of many problems in transient flows that would other-
wise be quite laborious. As an example of its applica-
tion, and as a means of obtaining an interesting result,
let equation (5a) be applied to the vertical-velocity
function of the form w(s)=1wee™.
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There results for the lift, when the vertical velocity
woe®* is suddenly applied at =0

ST gk (s) Fangie™ f ky(e)e—ds,

In order to isolate the transient and steady-state parts,
the familiar device of separating the interval 0 to s
into an interval 0 to = minus an interval ¢ to « is used.

Then, for the steady-state part only (writing & in
place of & in the definite integral),

L—2b grwsgifee® L ® ky(e)eteds

This equation must agree with Theodorsen’s result
(equation (2)), which may be written in this case

L=2xbpruw,Ck)e™*
Hence it must follow that

Oy =it | eds ®)
or, in better mathematical form,
O —1=ik [ llu(o)—1le=2ds (68)
It follows, for the components of C(k)=F--1@3, that

_1%‘7‘).= j; ukl(s) sinks ds M
C%@.: J; “[u(s)—1] coske ds )

These equations can be inverted by the properties of

Fourier transforms (reference 4, p. 183). Then
k=2 [ "TE sinks at ®)

=1+§ﬁm% cosks dk

Some approximate results.—The integration ex-
pressed in equation (6) can be performed directly when

(10)

the approximate expression ky(s)=~1— 4_’2? is employed.
Then the following simpler expressions for C(k), F, and

G, which hold within a few percent, are obtained (cf.
Jahnke-Emde, “Tables of Functions,” p. 80):2

C(k)—1=22ike**Ei(—4ik) (6b)

L vcosdk: sith—sindk Cidk

%gcos% Oitk+sindk sidk

The following approximate result is also of interest.
Let the vertical-velocity function be of the form
w(8)=wy(1l—e~1*) where v determines the rate at which
w(s) approaches w,. Then from (5), using the approxi-
mate expression for ki(s),

MML (6b) may be considered the limit, as +—w, of the function (ef. equa-

tion (5h)):
on. (58)) C(k, 8)—1u2iketi¥{ Ei(—4ik) —Ei[—(4-f1) FE]}
The transient term containing & approaches 0 as 8- .
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Second derivation of equation (6).—The result
expressed in equation (6) can be demonstrated in stiil
another way, which, essentially, is Kiissner’s treatment.
(Cf. reference 3, p. 420.) A common artifice in the
treatment of unit discontinuities is to represent the
unit “jump”’ function

1(s)=1 for >0

1(s)=0 for <0
by the following integral in the complex k plane, which
can be evaluated by residue theory:

1 eih
1O =g f, 7 dk

=1 — g1 —9ye= [ (4 +8)y—Ei(dy)]

Here the hook integral means integrate from — « to
+ «,bypassing the singular point at the origin by asmall
semicircle from below. In effect, a spectrum analysis

La

.8 = —

.6
kels) 12
g
T
2/
/
ol

4~ o 2 3 4 & 6 7 & 9
8, disfance fraversed in ferms of half-chord lengifr &

F16URE 4.—The function ks(e) of Kilssner.

of the unit jump function has been made as a limit of
a sum of exponential terms. To each exponential term
of vertical velocity there corresponds the Lift given by
multiplication with Theodorsen’s function C(k). Then,®
by addition

1t O@)—1
—'1+2_ri_[.,—_k ¢

=0 [¢<0]

Separating C(k) into F(k)+4iG(k) end noting that
O(—k)Y=F(k)—iG(k), there results

ke dk [s>0]

k=142 f G(k)coslcs dk
_2(Fk) . .,
=2 fo &) ine ar

which check equstions (9) and (10) and hence also
equations (7) and (8).

Kiissner’s funection, k(s).—Kiissner has derived a
function k;(s) (fig. 4), which gives the lift on an airfoil
as it penetrates into a sudden vertical-gust region with-
out change in direction. If the change in vertical

¥ The relation between C(E) and Es(s) Is expressed in the gperational cal

C(k)1(s) =k (s), where ik Is the operator d/ds and the expression Is I.nberpteted “tha
function O kg operating on the unit jump function 1{s).”
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velocity in the gust region is w (assumed constant), the
change in liftaus the airfoil leading edge penetrates the

gust region is
L=2xbprwk,(s) 11

Note that the function k,(s) is defined for 6>>—1, and is
0 for s<—1, i. e., before the leading edge has pene-
trated the gust region.

In order to obtain the relation of k:(s) to k;(s), note
that the operational equivalent of ky(s) (in the same
sense * that C(k)1(s)=Fki(s)) is C) [Jo(k)F2J1 (k)]
(reference 3, p. 420). This latter function describes
the steady-state lift due to circulation on an airfoil
moving with uniform velocity » and whose vertical
velocity is oscillating sinusoidally but progressing in
the form of waves from point to point, i. e., the vertical
velocity is of the form

WpetWIHED —qpy gtk t)

where 2 defines any point of the airfoil measured from
the center.

Then, the following relations hold, writing ¢ for s+1,
Ck) 1(e)=k:(0)
o) +4, ()] 1()=S(e)=5+ arc sin (s—1)

+L Y= =T 0<o<2]
=1 [¢>2]
The second relation is given by Nielsen in “Handbuch

der Cylinderfunctionen,” page 197. By superposition,
there results for the corbined operator

O(k) [Jo(k) 41, (k)] 1(a),

Fy(s) = L " llo— NS ()

where .
S'N) =;1;\/2_T>\ [0<A<2]
=0 [\>2]

Hence,

BO=2 [ he—04/E52 0 n<o<al (2)

12 2—A '
== Okl(a—h)’JTdP\ [e>2]
or, expressed in terms of s,
1(* 1—s '
k2 (s) =;f-1kl (s—sl)\/ I——I——sidsl [—1<s<1]
=1 " be—e )\/ﬂds [6>>1]
= 1 1 1+81 1
The effect of an arbitrary gust funetion w(s) can be
written directly by superposition (s=8+1)

21-%pv=w(o)k2 (o) +J;¢kz (O'x)a%w(a'— cday  (13)

(12a)

¢ For & correction to an error in sign that exists in referance 3, p. 420, consult refer-
ence 5. The values of k?(s) here given therefore need to be modified; the corrected
velues, including the apparent-mass eflect Que to change of shape, are presented in
reference 5.
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The approximate expression kl(s)etl—a-_zl-_—s may be put
into equation (12). Then (cf. table I),

2471 [r>9]

kz(d’)g‘& 4+0_

(12b)
g%[{a_@———;) —cos™}(1—a)

CONCLUDING REMARKS

It has been shown that-the functions C(k) and £,(s)
are of considerable significance in the theory of non-
stationary flows. To a certain extent, the results are
formal since many of the analytic properties of these
functions lie hidden in their complicated structures.
Further mathematical studies of the function C(k)
when £ is a complex variable would appear to be desir-
able, since this function is associated with the lift due
to a general damped sinusoidal motion of the airfoil. In
many problems in transient flows, it is therefore of
value to employ the approximate expressions for
C(k), ky(s), and ks(s) given and thus to obtain quickly
a simpler perspective of the problem.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,
NaTioNAL ApvisorRY COMMITTEE FOR AERONAUTICS,
LaneLey Figup, Va., March 28, 1938.
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TABLE I.—VALUES OF ki(s) AND Fky(s)

joy

[=}]

'S

(<

s 10 2 ky(8) approz, ky(n) $ ks appee.
=-1 [ 0 0 [}

—5] 0 ] .328 328
1] . 5000 . 5000 .468 .408
N . 5357 . 5556 . 568
1 . 6008 . 6000 03¢ .033
2 . 6698 . 6667 .003 .62
3 L7195 . 7143 737 1
4 . 7582 . 7600 772 .Te4
& . 7880 778 .79 L7180
[ ] . 8125 <8000 822 . 800
ki . 8325 8182 80 .88
8 . 8485 . 8338 . 858 .810
9 . 8625 .8161 . 868 . 862
10 8745 . 8572 87 . %60
20 . 9321 . 9107 L9034 .918
L] 1. 0000 L. 0000 1.000 1.000

1 Values of kg(s) taken from references 1 and 3.
1 From equation (1s).

$ Valoes of hY) calenlated from equation (12).
¢ From equetion (12b).



